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Abstract
We give a simplified form of Simon’s separability criterion for two-mode
Gaussian states, showing that for systems whose unitary evolution is governed
by arbitrary time-dependent quadratic Hamiltonians, the separability dynamics
is completely described in terms of the determinant of the cross-covariance
matrix. As concrete examples, we consider the evolution of the ‘inverse
negativity coefficient’ (which gives a quantitative estimation of the ‘degree
of entanglement’) for two initially uncoupled modes (each being in a squeezed
thermal state) in the cases of parametric converter, parametric amplifier and for
a cavity whose boundary oscillates in resonance with two field modes.

PACS numbers: 03.65.Ud, 03.67.Mn, 42.50.Dv, 42.65.Yj

1. Introduction

Various problems related to entangled quantum states were subjects of numerous studies
performed over the past decade [1–4]. One of them is the condition of separability of mixed
quantum states, i.e., a possibility of representing the statistical operator ρ̂ of the total system
as a sum of direct products of statistical operators acting on each part separately:

ρ̂ =
∑

i

pi ρ̂i1 ⊗ ρ̂i2 pi � 0
∑

i

pi = 1. (1)

Recently, this problem was solved for bipartite continuous variable Gaussian states [4–11].
In the most explicit form, the separability criterion was given by Simon [6].

The aim of our paper is to show that Simon’s criterion can be significantly simplified,
if the system under consideration does not interact with any dissipative environment, and its
dynamics is governed by an arbitrary quadratic Hamiltonian. It turns out that this criterion is
closely related to the concept of universal quantum invariants introduced in [12, 13]. For this
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reason, instead of calculating determinants and traces of several matrices and their products in
accordance with the initial formulation [6], it is sufficient to calculate the determinant of the
only matrix composed from cross-covariances between quadrature components of two modes.
This is demonstrated in section 2, where we introduce, beside the ‘separability parameter’, an
‘inverse negativity coefficient’, which can be used, as well as other ‘negativities’ [14–16], for
quantitative estimations of the ‘degree of entanglement’.

In sections 3–5 we consider, as examples, the evolution of the separability parameter
and inverse negativity for different mechanisms of entanglement: parametric conversion
(section 3) and parametric amplification. In the latter case, we compare two types of parametric
excitation: an external time-dependent pumping in a cavity with fixed geometry (section 4) and
the resonance between oscillating boundary and field modes in a cavity with specific spectrum
of the unperturbed field eigenfrequencies (section 5). Section 6 contains a discussion of the
results obtained.

2. Simplified separability criterion and measures of (in)separability

We consider two-mode continuous variable systems, which can be described in terms of
standard bosonic annihilation/creation operators âk, â

†
k , or equivalent quadrature components

operators (we assume h̄ = 1):

âk = (ωkx̂k + ip̂k)/
√

2ωk k = 1, 2. (2)

It is well known that Gaussian states are completely determined by mean values and
(co)variances of the operators (2) [4, 17–20]. We assume for simplicity that all mean values
are equal to zero (otherwise it is sufficient to replace the operators âk by âk − 〈âk〉). Then
symmetrical real covariances are defined as qαβ ≡ 1

2 〈q̂αq̂β + q̂β q̂α〉, where qα are components
of the four-dimensional vector q = (x1, p1, x2, p2). It is convenient to gather the covariances
in the symmetrical 4 × 4 covariance matrix Q, splitting this matrix in 2 × 2 blocks as follows:

Q = ‖qαβ‖ =
∥∥∥∥Q11 Q12

Q21 Q22

∥∥∥∥ . (3)

These blocks possess the properties Q11 = Q̃11, Q22 = Q̃22, Q12 = Q̃21, where the tilde over
a matrix means matrix transposition.

Gaussian operator exponentials cannot be represented as finite sums of the form (1).
However, if a replacement of the sum by an integral is permitted, i.e., if continuous
decompositions over infinite number of operator products are admissible, then certain families
of Gaussian states become separable. It was shown [5, 6, 8, 10] that the continuous separability
of a Gaussian state is equivalent to its ‘classicality’, in the sense of possessing well-
defined Sudarshan–Glauber P-distribution. For our purposes the most convenient criterion of
separability is that found in [6], because it is expressed directly in terms of invariants of blocks
of the covariance matrix (3). Namely, the necessary and sufficient condition of separability of
a Gaussian state possessing the covariance matrix Q is the inequality

I1I2 + (|I3| − 1/4)2 − I4 � (I1 + I2)/4 (4)

where

I1 = detQ11 I2 = detQ22 I3 = detQ12

I4 = Tr(Q11�Q12�Q22�Q21�) � =
∥∥∥∥ 0 1
−1 0

∥∥∥∥ .

For non-Gaussian states inequality (4) is only a necessary condition for separability [6].
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Taking into account that the term I4, given by the trace of the product of eight matrices,
is in fact incorporated in the determinant of the total covariance matrix, due to the identity [6]

detQ = I1I2 + I 2
3 − I4,

the separability criterion (4) can be written in a simpler form (see also [8]) S � 0, where

S = detQ + 1
16 − 1

4 (detQ11 + detQ22) − 1
2 |detQ12|. (5)

Now let us suppose that the system’s dynamics is governed by some Hamiltonian which
is a quadratic form of operators (2) with arbitrary (in general, time-dependent) coefficients.
It was discovered in [12] (see also [13, 19] for generalizations) that such systems possess
universal quantum invariants, i.e., certain combinations of variances which are conserved in
time independently of a concrete form of coefficients of the Hamiltonian. These invariants exist
due to the symplectic structure of the transformation relating initial and time-dependent values
of the quadrature components operators. In the two-mode case there are two independent
universal invariants, directly connected with the terms of equation (5) [12, 13]:

D0 = detQ D2 = detQ11 + detQ22 + 2 detQ12. (6)

Consequently,

S(t) = S(0) + 1
2 (detQ12(t) − |detQ12(t)|) (7)

where

S(0) = D0 − 1
4D2 + 1

16 (8)

is nonnegative due to the generalized uncertainty relations [12, 19]. Thus we see, indeed, that
the separability of Gaussian states of bipartite quantum systems, whose evolution is unitary
(even if the Hamiltonian is time dependent), is determined completely by the determinant of
the cross-covariance matrix detQ12(t) (for given initial conditions). In particular, it becomes
quite obvious from the form (7) that the necessary (although not sufficient) condition of
inseparability (‘entanglement’) is [6] detQ12 < 0.

The ‘separability parameter’ S(t) can assume, in principle, any value in the infinite
interval (−∞,∞). One could wish to have some compact parameter characterizing the
degree of (in)separability in such a way, that its values would be confined within the interval
(−1, 1), so that negative values would correspond to inseparable states (in some analogy with
Mandel’s parameter of ‘nonclassicality’), while positive values would correspond to separable
(‘classically correlated’) states. Of course, the choice of such a parameter is not unique: any
monotonous function f (S) satisfying the condition −1 < f (S) < 1 could serve for this
purpose. Simple examples are, e.g., the functions

A(S) = tanh(αS) (9)

B(S) = sign(S)
(
1 + |βS| −

√
1 + (βS)2

)
(10)

where α and β are some positive constant coefficients.
However, in order to follow current trends in studies on entanglement, we prefer to use

a function which is close to the so-called ‘negativity’ [14–16]. In the case of Gaussian states
the ‘logarithmic negativity’ is defined by the formula

EN =
2∑

k=1

F(|ck|) F (x) =
{

0, 2x � 1
−log2(2x), 2x < 1

(11)

where the arguments ck are the so-called ‘symplectic eigenvalues’ of the ‘partially transposed’
variance matrix Q(PT), which is obtained from matrix (3) by changing the sign of the
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‘momentum-coordinate’ covariances in matrices Q12 and Q21 (this procedure corresponds
to the reflection of momentum of one subsystem of the bipartite system, e.g., a transformation
of the vector q of the form q → (x1,−p1, x2, p2)). The symplectic eigenvalues of the
symmetrical matrix Q are defined as eigenvalues of the matrix X = QZ−1, where the 4 × 4
antisymmetrical matrix Z consists of commutators between the elements of vector q. In our
case,

Z = i

∥∥∥∥� 0
0 �

∥∥∥∥ .

The sum in (11) contains only two terms because the set of symplectic eigenvalues consists
of pairs ±ck, k = 1, 2. One of the reasons for definition (11) is that for separable states the
change Q → Q(PT) results in a new variance matrix corresponding to another physical state,
and the inequality 2|ck| � 1 is one of many apparently different forms of uncertainty relations,
while for inseparable states partial transpositions result in covariance matrices which cannot
be related to any physical state (thus violating the uncertainty relations). An explicit form of
the symplectic eigenvalues κ1,2 of true 4 × 4 covariance matrices was obtained in [21] (see
also [22, 23]):

|κ1,2| = 1
2

[√
D2 + 2

√
D0 ±

√
D2 − 2

√
D0

]
(12)

where invariants D0 and D2 are defined in (6). The characteristic equation for matrix Q(PT)Z−1

has the same form as for matrix QZ−1, with the only difference that one should change the
sign of detQ12. This means that the values |c1,2| can be obtained from |κ1,2| (12) by means of
substitution [14–16]

D2 → D̃2 ≡ detQ11 + detQ22 − 2 detQ12. (13)

Obviously,

D̃2 = D2 − 4 detQ12, (14)

and sinceD0 andD2 do not depend on time in the case involved, the dynamics of the logarithmic
negativity is also determined completely by the time dependence of the only quantity detQ12.
In order to deal with compact measures, we shall study instead of EN the ‘inverse negativity’

I = 2−EN − 1 = −2N /(2N + 1) (15)

where N = 1
2 (2EN − 1) is the ‘negativity’ introduced in [14]. The values of the coefficient

I are close to −1 for strongly entangled states, while I ≡ 0 for separable states. Now let us
note that the invariant D0 is connected with symplectic eigenvalues as D0 = |κ1κ2|2 = |c1c2|2
(because partial transposition does not change detQ). Then an immediate consequence of
the generalized uncertainty relation detQ � 1/16 [12, 17, 19, 24] is that at least one of the
symplectic eigenvalues must exceed the value 1/2. This means that the sum in (11) contains
in fact only one term with |cmin|. Therefore, the inverse negativity can be written as

I = min(0, 2|cmin| − 1) (16)

with

2|cmin| =
√
D̃2 + 2

√
D0 −

√
D̃2 − 2

√
D0. (17)

The following expressions hold for the determinants of the covariance and cross-
covariance block matrices (remember that we suppose that all average values of the quadrature
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components are zero):

detQkk = 〈
x̂2

k

〉〈
p̂2

k

〉 − 1
4 〈x̂kp̂k + p̂kx̂k〉2 = 1

4

〈
â
†
kâk + âkâ

†
k

〉2 − ∣∣〈â2
k

〉∣∣2
(18)

detQ12 = 〈x̂1x̂2〉〈p̂1p̂2〉 − 〈x̂1p̂2〉〈p̂1x̂2〉 = ∣∣〈â1â
†
2

〉∣∣2 − |〈â1â2〉|2. (19)

It is worth noting also that the determinants of matrix Q and its diagonal blocks Qkk are related
to the purities of the whole system and its subsystems according to the relations [19]

µ ≡ Tr ρ̂2 = (16 detQ)−1/2 µk ≡ Tr ρ̂2
k = (4 detQkk)

−1/2. (20)

Any one-mode Gaussian state with zero mean values of quadrature components can be
considered as being obtained from some thermal state, defined with respect to ‘bare’ bosonic
operators b̂, b̂†, possessing the second-order average values 〈b̂†b̂〉 = ν � 0 and 〈b̂2〉 = 0, by
means of a ‘dressing’ linear canonical transformation of the form [19, 25]

â = b̂ cosh(r) + b̂† sinh(r) eiχ (21)

where positive coefficient r characterizes the degree of squeezing of the ‘initial’ thermal state
and phase χ is responsible for the statistical correlations between the quadrature components in
the ‘dressed’ state (we have suppressed a possible but unsignificant overall phase). We assume
for simplicity hereafter that the joint density matrix of two modes is totally disentangled
(factorized) at the initial instant t = 0, i.e., Q12(0) = 0. Therefore, we shall use the following
parametrization of the second-order moments in the initial Gaussian state of the kth mode
(assuming that 〈âk〉 = 0 and introducing parameters ϑk ≡ νk + 1/2 � 1/2):〈

â
†
kâk

〉 = ϑk cosh(2rk) − 1
2

〈
â2

k

〉 = ϑk sinh(2rk) eiχk . (22)

Due to equation (18), parameters ϑk determine purities of each subsystem µk = (2ϑk)
−1,

which do not depend on the degree of squeezing. According to equations (8) and (18), the
initial value S(0) also does not depend on the squeezing parameters for factorized states with
µ = µ1µ2:

S(0) = (
ϑ2

1 − 1
/

4
)(

ϑ2
2 − 1

/
4
)
. (23)

However, the parameters rk and χk do influence the evolution of the ‘separability coefficients’
and the inverse negativity I through the time dependence of detQ12. In particular, using
equation (14) we can write

2|cmin| =
√

(ϑ1 + ϑ2)
2 − 4 detQ12 −

√
(ϑ1 − ϑ2)

2 − 4 detQ12. (24)

The only solution of equation 2|cmin| = 1 with fixed values of ϑ1 and ϑ2 is detQ12 =
−(

ϑ2
1 −1

/
4
)(

ϑ2
2 −1

/
4
)
. Since the right-hand side of (24) is monotonous function of detQ12,

the inseparability criteria S(t) < 0 and I(t) < 0 are indeed equivalent. If detQ12 < 0 and
4|detQ12| � (ϑ1 + ϑ2)

2, then the inverse negativity tends to −1 asI ≈ −1 + ϑ1ϑ2/
√|detQ12|.

In the following sections, we study the dynamics of separability parameter S(t) (7)
for parametric converters and amplifiers in the special cases of exact resonance, when the
solutions have the simplest explicit forms. The evolution of different measures of entanglement
and intermode correlations for two harmonic oscillators with constant frequencies and the
most general time-dependent resonance bilinear couplings was considered in [23, 26], and
entanglement in a chain of oscillators with time-independent parameters was investigated
in [27].
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3. Parametric converter

The parametric converter Hamiltonian is

Ĥ c = ω1â
†
1â1 + ω2â

†
2â2 + κâ

†
1â2 eiηt + κ∗â†

2â1 e−iηt (25)

where we set η = ω2 − ω1 (confining ourselves to the simplest case of exact resonance). The
well-known exact solutions of the Heisenberg equations of motion read [28, 29]

â1(t) = e−iω1t

[
â1(0) cos τ − iκ

|κ| â2(0) sin τ

]

â2(t) = e−iω2t

[
â2(0) cos τ − i|κ|

κ
â1(0) sin τ

]
where τ ≡ |κ|t . Then,

detQ12(τ ) = 1

4
sin2(2τ)Rc (26)

Rc =
{〈

â
†
2â2 − â

†
1â1

〉2 −
∣∣∣∣ |κ|

κ

〈
â2

1

〉
+

κ

|κ|
〈
â2

2

〉∣∣∣∣
2
}

t=0

= (ϑ1−ϑ2)
2 − 4ϑ1ϑ2Y (27)

where

Y = sinh2(r1 + r2) − sinh(2r1) sinh(2r2) sin2 φ φ = arg(κ) + 1
2 (χ2 − χ1). (28)

We see that Rc and, consequently, detQ12(τ ) can be negative only provided
〈
â2

k

〉
(0) �= 0

(or rk > 0) at least for one of two values k = 1, 2. This means that at least one mode must
be initially in a ‘nonclassical’ state in order that inseparability could arise. For initial thermal
states of both modes, these modes cannot become truly entangled in the process of evolution.
The parameters rk must exceed some critical values, in order that inseparability could be
achieved. For example, if the first mode was initially in a pure state (ν1 = 0) and the second
mode was in a thermal state (r2 = 0), then inseparability can be achieved for any nonzero
value of the scaled time τ , if ν2

2 − 2ϑ2 sinh2(r1) < 0, or it cannot be achieved at all, if this
expression is positive.

In a generic case the coefficient Rc depends essentially on the phase difference φ. In
the case φ = 0, which is the most favourable for entanglement, the necessary condition of
inseparability (which can be achieved at least at the instant τ = π/4) is

sinh(r1 + r2) >
ϑ1ϑ2 − 1/4√

ϑ1ϑ2
. (29)

Now, it is worth remembering that the minimal value of the variances of quadrature components
of the family of operators â eiγ for 0 � γ < 2π is given by a simple formula

σmin = 1
2 + 〈â†â〉 − |〈â2〉| (30)

(it is known under the names ‘principal squeezing’ [30] or ‘invariant squeezing’ [31, 32]). In
the case of parametrization (22), formula (30) assumes the form

σ (k)
min = ϑk exp(−2rk) (31)

and one can verify that the inequality (29) is equivalent to the inequality σ (1)
minσ

(2)
min < 1/4.

Consequently, inseparability by means of parametric conversion can be achieved only if at
least one mode was initially in truly squeezed state, with the minimal value of one of quadrature
components less than the variance of the coherent state 1/2.
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However, the transition from separable to inseparable state is not correlated with the
behaviour of physical observables, such as the difference of the mean number of quanta in
two modes �N = 〈

â
†
1â1 − â

†
2â2

〉
, or geometrical characteristics of the state in the Hilbert

space, such as the difference of squares of inverse purities of the modes �M = µ−2
1 − µ−2

2 .
In the simplest special case of χ1 = χ2 = φ = 0, both functions have the same time
dependences: �N (τ ) = �N (0) cos(2τ) and �M(τ ) = �M(0) cos(2τ), whereas S(τ ) =
S(0) + Rc sin2(2τ)/4. At the moments of transition τ∗, determined by the equation
sin2(2τ∗) = −4S(0)/Rc, the functions �N (τ ) and �M(τ ) do not show any changes in their
behaviours. In particular, they can be positive, when the separable state becomes inseparable,
but they can be negative, at the moment of the next transformation, from inseparable to
separable state.

4. Parametric amplifier

The parametric amplifier Hamiltonian is (again in the case of exact resonance)

Ĥ a = ω1â
†
1â1 + ω2â

†
2â2 + κâ1â2 eiηt + κ∗â†

2â
†
1 e−iηt (32)

with η = ω2 + ω1. The solutions of the Heisenberg equations are [28, 33]

â1(t) = e−iω1t

[
â1(0) cosh τ − i|κ|

κ
â
†
2(0) sinh τ

]

â2(t) = e−iω2t

[
â2(0) cosh τ − i|κ|

κ
â
†
1(0) sinh τ

]
with formally the same scaled time τ ≡ |κ|t . Now,

detQ12(τ ) = 1

4
sinh2(2τ)Ra (33)

Ra =
{∣∣∣∣ |κ|

κ

〈
â2

1

〉 − κ

|κ|
〈
â2

2

〉∣∣∣∣
2

− 〈
â
†
2â2 + â1â

†
1

〉2}
t=0

= −(ϑ1 + ϑ2)
2 − 4ϑ1ϑ2Y (34)

with Y given in (28). We see that Ra is always negative, even for initial thermal states
with r1 = r2 = 0. Consequently, any initially uncoupled states become inseparable in the
process of parametric amplification after sufficiently long time (due to the factor sinh2(2τ) in
equation (33)). According to equation (24), the inverse negativity coefficient goes
monotonously to −1 as τ → ∞.

Let us consider a simple example of initially unsqueezed thermal states with equal
temperatures: ϑ1 = ϑ2 ≡ ϑ , r1 = r2 = 0. Then S(τ ) = (ϑ2 − 1/4)2 − ϑ2 sinh2(2τ),
so that the mixed state of two initially uncorrelated modes becomes inseparable at the moment
τ∗, when sinh(2τ∗) = (ϑ2 − 1/4)/ϑ . On the other hand, the mean energy of each mode grows
with time as Ek(τ ) = ωkϑ cosh(2τ), and nothing remarkable happens with this function at
the moment τ = τ∗, when Ek(τ∗) = ωk(ϑ

2 + 1/4). Note that the state of each mode remains
unsqueezed for any moment of time, as soon as

〈
â2

1

〉
(t) = 〈

â2
2

〉
(t) = 0 for the chosen initial

conditions.

5. Two resonantly coupled modes in a vibrating cavity

It is worth noting that parametric amplification is not always accompanied with transforming
initial factorized states into inseparable entangled states, even in the cases when the energies
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of each mode grow unlimitedly. An interesting counterexample is the special case of the
field in a cavity with moving boundaries, where entanglement between discrete modes occurs
due to the Doppler effect. Various aspects of this problem (modification of Casimir’s force,
photon creation from vacuum, etc) were studied in numerous publications reviewed in [34].
In particular, the problem of entanglement was considered in [35–38].

Strictly speaking, all modes are coupled in this case. However, there exists an important
special case of resonance coupling, where only two field modes are coupled, whereas
interaction with other modes can be neglected (or taken into account as small perturbations)
[39].

Confining ourselves to the simplest case of exact resonance, we suppose that one of the
cavity’s walls performs small oscillations with the frequency 2ω

(0)
1 , where ω

(0)
1 is the frequency

of some electromagnetic field mode of the stationary cavity. Assuming that ω
(0)
1 ≡ 1 (i.e.,

normalizing all frequencies by ω
(0)
1 ), we can write the instantaneous time-dependent frequency

ω1(t) of the excited mode in a cavity with oscillating wall as

ω1(t) = 1 + 2ε cos(2t) |ε|  1. (35)

Besides, we suppose that the unperturbed field frequency spectrum includes the frequency
ω

(0)
3 = 3, but it does not contain frequencies close to 5ω

(0)
1 . The possibility of such a situation

was pointed out in [39]. An example is a cubic cavity with the pair of modes {111} and
{511}. Another example is the pair of modes {110} and {510} in the rectangular cavity with
Lx = √

2Ly (in this case, the common direction of polarization is along the z-axis). Then
we have two parametrically excited and resonantly interacting modes, whose dynamics is
governed by the effective Hamiltonian [40]

H13 = 1
2

(
p2

1 + p2
3

)
+ 3µ̃ε sin(2t)(p1x3 − p3x1) + 1

2 [1 + 4ε cos(2t)]x2
1 + 9

2x2
3 (36)

where symbols xk and pj with k, j = 1, 3 stand for the quadrature components of the first
and third field modes, and µ̃ is a constant factor, which depends on the cavity geometry (for
a cubic cavity, µ̃ = 5/12). An equivalent expression in terms of the annihilation/creation
operators is as follows (we omit here nonresonant terms)

H13 = â
†
1â1 + 3â

†
3â3 + ε cos(2t)

(
â
†2
1 + â2

1

)
+ i

√
12µ̃ε sin(2t)

(
â
†
1â3 − â1â

†
3

)
. (37)

The Heisenberg equations of motion for the operators x̂k and p̂k , following from the
Hamiltonian (36), have been solved in the frameworks of the method of slowly varying
amplitudes in [40]. In terms of the operators âk and â

†
k these solutions have the following

form:

â1(t)=
{

â1(0)

[
cos(ζ τ ) cosh τ +

sin(ζ τ )

ζ
sinh τ

]
− iâ†

1(0)

[
cos(ζ τ ) sinh τ +

sin(ζ τ )

ζ
cosh τ

]

+
√

2γ
sin(ζ τ )

ζ

[
â
†
3(0) sinh τ − iâ3(0) cosh τ

]}
e−it (38)

â3(t)=
{

â3(0)

[
cos(ζ τ ) cosh τ − sin(ζ τ )

ζ
sinh τ

]
+ iâ†

3(0)

[
cos(ζ τ ) sinh τ − sin(ζ τ )

ζ
cosh τ

]

−
√

2γ
sin(ζ τ )

ζ

[
â
†
1(0) sinh τ + iâ1(0) cosh τ

]}
e−3it (39)

where

τ ≡ 1
2εt ζ =

√
2γ − 1 γ ≡ 96µ̃2. (40)
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For the modes {111} and {511} of the cubic cavity or {110} and {510} of the rectangular cavity
with Lx = √

2Ly we have γ = 50/3. Due to this explicit example, we assume that parameter
γ is large: γ � 1.

Using equations (19), (22), (38) and (39) (with the change of indices 2 → 3) we can
express the determinant of the cross-covariance matrix as

detQ13(τ ) = 2γ
sin2(ζ τ )

ζ 2

{
cos2(ζ τ )[(ϑ3 − ϑ1)

2 − 4ϑ1ϑ3Y−]

− 2ϑ1ϑ3Z
sin(2ζ τ)

ζ
− sin2(ζ τ )

ζ 2
[(ϑ3 + ϑ1)

2 + 4ϑ1ϑ3Y+]

}
(41)

where the coefficients

Y± = sinh2(r1 ∓ r3) ± sinh(2r1) sinh(2r3) sin2

(
χ1 ± χ3

2

)
and

Z = sin χ1 sinh(2r1) cosh(2r3) + sin χ3 sinh(2r3) cosh(2r1)

become zero in the special case of initial thermal states of both modes (r1 = r3 = 0).
We see that the degree of separability is strictly periodical function of the ‘slow time’ τ

(note that the interaction part of the Hamiltonian (37) has the same form as for the parametric
converter). Nonetheless, mean energies of each mode, Ek ≡ ωk

(〈
â
†
kâk

〉
+ 1

2

)
, increase in time

almost exponentially (with some superimposed oscillations):

E1(τ ) = ϑ1C1(τ ) cos2(ζ τ ) + ϑ1S1(τ )
sin(2ζ τ)

ζ
+ [ϑ1C1(τ ) + 2γϑ3C3(τ )]

sin2(ζ τ )

ζ 2
(42)

E3(τ )/3 = ϑ3C3(τ ) cos2(ζ τ ) − ϑ3S3(τ )
sin(2ζ τ)

ζ
+ [ϑ3C3(τ ) + 2γϑ1C1(τ )]

sin2(ζ τ )

ζ 2
(43)

where

C1(τ ) = cosh(2τ) cosh(2r1) − sinh(2τ) sinh(2r1) sin χ1

C3(τ ) = cosh(2τ) cosh(2r3) + sinh(2τ) sinh(2r3) sin χ3

S1(τ ) = sinh(2τ) cosh(2r1) − cosh(2τ) sinh(2r1) sin χ1

S3(τ ) = sinh(2τ) cosh(2r3) + cosh(2τ) sinh(2r3) sin χ3.

For ζ � 1, we have simplified approximate expressions

E1(τ ) ≈ ϑ1C1(τ ) cos2(ζ τ ) + ϑ3C3(τ ) sin2(ζ τ )

E3(τ )/3 ≈ ϑ3C3(τ ) cos2(ζ τ ) + ϑ1C1(τ ) sin2(ζ τ ).

For initial unsqueezed thermal states, the minimal values of detQ13 are achieved when
ζ τ = π/2 + kπ, k = 0, 1, . . .:

detQmin
13 = −(ϑ3 + ϑ1)

2(ζ 2 + 1)/ζ 4.

In the ‘high-temperature’ case, when ϑ1 ≈ 3ϑ3 � 1 (due to the energy equipartition law),
formula (23) yields S(0) ≈ ϑ4

1

/
9, whereas detQmin

13 ≈ −2ϑ2
1

/
ζ 2 (for ζ � 1). Consequently,

in this case a highly mixed quantum state of two coupled modes remains separable for
all times, although their energies increase unlimitedly (in contradistinction to the case of
parametric amplifier considered in section 4).
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Figure 1. The normalized energies Ek(τ) ≡ Ek(τ )/Ek(0) of the first and third modes in a cubic
cavity with resonantly oscillating boundary (γ = 50/3) versus the ‘slow time’ τ , for initial highly
squeezed thermal states with ϑ1 = 3ϑ3 = 100, r1 = r3 = 2.5, and χ1 = χ3 = 0. In the insertion:
the inverse negativity coefficient I (16) between the first and third modes under the same initial
conditions.

However, the situation may be quite different for initial squeezed states. For example, if
χ1 = χ3 = 0, ϑ1 ≈ 3ϑ3 � 1 and ζ � 1, then the minima of function detQ13(τ ) happen for
ζ τ ≈ π/4 + mπ , when

detQmin
13 ≈ ϑ2

1

9
[1 − 3 sinh2(r1 + r3)].

Consequently, inseparability can be achieved, provided the initial degree of squeezing is big
enough at least for one state. Taking for simplicity r1 = r3 = r � 1, we obtain the following
approximate expressions for mean energies of the two modes:

E1(τ ) ≈ ϑ1 cosh(2τ) cosh(2r)
[
cos2(ζ τ ) + 1

3 sin2(ζ τ )
]

(44)

E3(τ ) ≈ ϑ1 cosh(2τ) cosh(2r)[cos2(ζ τ ) + 3 sin2(ζ τ )]. (45)

From the point of view of energy, interesting things happen at the moments τn = πn/ζ , when
E1 = E3, and at the moments close to τ ′

n = (n + 1/2)π/ζ , when E1 attains its local minimum
and E3 attains its local maximum with Emax

3 ≈ 9Emin
1 (remember that ζ � 1): see figure 1.

However, at these moments the quantum state is always separable, because the inverse
negativity coefficient I (16) equals exactly zero for τ = τn and τ = τ ′

n, as one can see
in the insertion of figure 1 and from an approximate analytical expression

I(τ ) ≈ min
{
0, 2

3ϑ1
[√

4 + 3 sinh2(2r) sin2(2ζ τ) −
√

1 + 3 sinh2(2r) sin2(2ζ τ)
] − 1

}
. (46)

The joint state of two modes is inseparable when |sin(2ζ τ)| > 2/[
√

3 sinh(2r)], and maximal
degree of inseparability (entanglement) is achieved at the moments τ̃k = π(k + 1/4)/ζ .
However, nothing remarkable happens with mean energies in these time intervals.

Time dependences of the mean energies turn out to be rather sensitive to phases of the
initial squeezing parameters. For instance, choosing χ1 = χ3 = π/2 and the same values
r1 = r3 = r, ζ , ϑ1 and ϑ3 as before, we obtain the following approximate expressions instead
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Figure 2. The same as in figure 1, but for χ1 = χ3 = π/2.

of (44) and (45):

E1(τ ) ≈ ϑ1
[
cosh(2τ − 2r) cos2(ζ τ ) + 1

3 cosh(2τ + 2r) sin2(ζ τ )
]

(47)

E3(τ ) ≈ ϑ1[cosh(2τ + 2r) cos2(ζ τ ) + 3 cosh(2τ − 2r) sin2(ζ τ )] (48)

Now, at the moments close to τn = πn/ζ we observe minima of E1 (which can be much
less than the initial energy, if r � 1) and maxima of E3, while the picture is inverted at the
moments close to τ ′

n = (n + 1/2)π/ζ : see figure 2. The inverse negativity is less sensitive
to the phases χ1 and χ2. In particular, the intervals of time when I(τ ) < 0 almost do not
depend on concrete values of χ1 and χ2. Only the ‘degree of inseparability’ is sensitive
to the phases (if ζ is not extremely big), due to the contribution of term Z sin(2ζ τ)/ζ in
equation (41), whose sign at the moments τ̃k = π(k + 1/4)/ζ depends on the parity of integer
k. This is clearly seen if one compares the insertions of figures 1 and 2. Again we note that
transitions from separable to inseparable states are not correlated with the behaviour of mode
energies.

6. Conclusion and discussion

Let us list the main results of the paper. First, we have obtained a simple form of Simon’s
separability criterion for bipartite closed quantum systems, whose evolution is governed by
arbitrary time-dependent quadratic Hamiltonians, showing that the separability dynamics of
such systems is completely determined by the time dependence of the determinant of the
cross-covariance matrix. Second, we have analysed the time evolution of the new separability
coefficient (‘inverse negativity’) for several examples of Hamiltonians, describing parametric
conversion, amplification and mixed process of amplification–conversion, which corresponds
to the case of a specific (e.g., cubic) cavity with resonantly oscillating boundary. It is worth
noting in this connection that time-dependent problems are isomorphic to the problems of
transformation of quantum states by some ‘active’ and ‘passive’ multiport optical devices,
such as beam splitters, interferometers or multiwave mixers [41]. Recently, these devices
were studied from the point of view of generating entangled states [42]. Thus, the analysis of
the time-dependent problem can easily be reformulated in terms of multiport optical devices
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after small changes in terminology and redefinition of the meaning of some parameters. In
particular, we have confirmed the known result that two modes can be entangled with the aid
of a beam splitter (which is equivalent to some parametric converter), only if at least one of
them was initially in a nonclassical (squeezed) state, with big enough squeezing coefficient.

A striking result of our study is that transitions from separable to inseparable states are
not accompanied by any visible qualitative change in the behaviour of observable physical
quantities, such as, e.g., mean energies of modes, or purities of states of each mode (cf [43],
where analogous conclusions were made with respect to the degree of ‘nonclassicality’ of
quantum systems). One could think that mean energies of each mode hardly have a direct
relation to the correlations between the modes. But a similar behaviour is observed for the
correlation between photon numbers of coupled modes

K = 〈(N̂1 − 〈N̂1〉)〈(N̂2 − 〈N̂2〉)〉 ≡ 〈N̂1N̂2〉 − 〈N̂1〉〈N̂2〉 N̂k ≡ â
†
kâk.

Actually, K depends on the moments of the first, second, third and fourth orders of the raising
and lowering operators. However, for Gaussian states all higher order moments can be
expressed in terms of the first- and second-order ones. For example, the fourth-order
centralized moments of any two real commuting quadratures zi and zj (where each zk may be
either xk or pk) can be written as [19]

〈(δẑi)
2(δẑj )

2〉 = 〈(δẑi)
2〉〈(δẑj )

2〉 + 2〈δẑiδẑj 〉2 δẑk ≡ ẑk − 〈ẑk〉.
Thus, for Gaussian states we have

K = |〈δâ1δâ2〉|2 +
∣∣〈δâ1δâ

†
2

〉∣∣2
+ 2 Re

[〈δâ1δâ2〉〈â1〉∗〈â2〉∗ +
〈
δâ1δâ

†
2

〉〈â1〉∗〈â2〉
]
. (49)

The photon number correlation depends on variances and mean values of the creation and
annihilation operators, while the separability properties depend on variances only. If 〈âk〉 = 0,
then K becomes identical (up to a normalization factor) with the trace–covariance correlation
coefficient introduced in [23, 44]. The time evolution of this quantity for different initial states
and different quantum systems was considered in [23, 26, 37]. Analysing the results of that
papers, we can conclude that nothing happens with the coefficient K when separable states
of two modes are transformed into inseparable states. Moreover, K is always nonnegative
for 〈âk〉 = 0, independently of the sign of separability coefficients. Although K can become
negative if 〈âk〉 �= 0, its negativity seems to have a little in common with inseparability
(understood as a ‘nonclassicality’ of the state). For example, in the case of a parametric
converter (section 3), for the initial shifted thermal state of the first mode (r1 = 0) and
nonshifted thermal state of the second mode (r2 = 〈â2(0)〉 = 0) we obtain

K = 1
4 sin2(2τ)(ν1 − ν2)(ν1 − ν2 + 2|〈â1(0)〉|2).

If the value of |〈â1(0)〉|2 is big enough and ν2 > ν1 (i.e., the temperature of the nonshifted
mode is higher than the temperature of the shifted one), then K < 0 for τ > 0, although the
joint state of two modes is separable, according to results of section 3.

In this connection, it would be interesting to find physical observables whose behaviour
is different for separable and inseparable states of continuous variable systems. Otherwise,
we have to admit that the concept of separability, being useful for quantum systems in finite-
dimensional Hilbert spaces (in view of applications to quantum computing and quantum
information theory), perhaps, loses its significance for continuous variable quantum systems,
where such quantities as energies or other directly measurable observables play more important
roles.
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[30] Lukš A, Peřinová V and Hradil Z 1988 Acta Phys. Polon. A 74 713
[31] Dodonov V V, Man’ko V I and Polynkin P G 1994 Phys. Lett. A 188 232
[32] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1
[33] Mollow B R and Glauber R J 1967 Phys. Rev. 160 1076
[34] Dodonov V V 2001 Modern Nonlinear Optics Part 1 (Advances in Chem. Phys. Series vol 119) ed M W Evans

(New York: Wiley) p 309
[35] Maia Neto P A and Dalvit D A R 2000 Phys. Rev. A 62 042103
[36] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[37] Andreata M A, Dodonov A V and Dodonov V V 2002 J. Russ. Laser Res. 23 531
[38] Narozhny N B, Fedotov A M and Lozovik Y E 2003 Laser Phys. 13 298
[39] Crocce M, Dalvit D A R and Mazzitelli F D 2001 Phys. Rev. A 64 013808

Crocce M, Dalvit D A R and Mazzitelli F D 2002 Phys. Rev. A 66 033811
[40] Dodonov A V and Dodonov V V 2001 Phys. Lett. A 289 291
[41] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033

Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371
[42] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869



696 A V Dodonov et al

Bruckmeier R and Schiller S 1999 Phys. Rev. A 59 750
Paris M G A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 299
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